您的位置 首页 知识

等差数列是什么意思(等差数列的三个公式)

等差数列的定义? 等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个…

等差数列的定义?

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。n为正整数。

等差数列的概念是什么

1、等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

2、例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。

二阶等差数列求和公式是什么

二阶等差数列求和公式是a(n)=An^2+Bn+C,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

等差数列是必修几

等差数列是高中数学必修五的内容。“数列”的主要内容是数列的概念与表示,等差数列与等比数列的通项公式与前n项和。数列作为一种特殊的函数,是反映自然规律的基本数学模型。

教科书通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,力求使学生在探索中掌握与等差数列、等比数列有关的一些基本数量关系。感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。教科书还通过在“阅读与思考”中介绍“九连环”问题。以及在“探究与发现”中设计“购房中的数学”,使学生进一步感受数列与现实生活中的联系和具体应用。

等差数列的公式有哪些

1、等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

2、等差数列{an}的通项公式为:an=a1+(n-1)d。

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列求和公式是什么

1、an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

2、等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的前n项和公式 是什么

等差数列的前n项和公式:an=a1+(n-1)d=ak+(n-k)*d。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

等差数列前n项的和

1、Sn=n*a1+n(n-1)d/2,Sn=n(a1+an)/2,以上n均属于正整数。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

2、数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

等差数列奇数项和与偶数项和

当n为偶数为,s偶-s奇=二分之一nd;当n为奇数为,s奇-s偶=Sn除以n(即这个数列的中间项的值)。

例如设原数列首项为a,公差为d。

原数列依次为a,a+d,a+2d,a+3d,a+2nd。

奇数项为:a,a+2d,a+4d,a+2nd。

奇数项和:S奇=【a+(a+2nd)】(n+1)/2=(a+nd)(n+1)

偶数项为:a+d,a+3d,a+5d,a+(2n-1)d。

偶数项和:S偶=【(a+d)+(a+2nd-d)】n/2=(a+nd)n。

S奇/S偶=(n+1)/n。

说明:

本题只需用到等差数列求和公式:(首项+尾项)*项数÷2。

等差数列是几年级学的

等差数列是高一学的,属于人教版是必修五的,也就是高一下学期,和高二上学期学的。

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+【n*(n-1)*d】/2或Sn=【n*(a1+an)】/2。

注意:以上n均属于正整数。

等差数列几年级学的

等差数列四年级学的,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+【n*(n-1)*d】/2或Sn=【n*(a1+an)】/2。注意:以上n均属于正整数。

版权声明
返回顶部