您的位置 首页 知识

不等式组的解法过程例题(二元一次不等式组的解法过程)

不等式组的解法过程? 先求不等式组中的每个不等式的解集。解法:1移项,2合并同类项,3不等号的两端同除未知数的…

不等式组的解法过程?

先求不等式组中的每个不等式的解集。解法:1移项,2合并同类项,3不等号的两端同除未知数的系数(未知数的系数小于零时,要改变不等号的方向)

在数轴上画出每个不等式的解集,利用数轴求出这些不等式的解集的公共部分。这个公共部分就是不等式组的解集。

两个未知数的解集在数轴上有公共部分时,如果方向都向左时取在左边的未知数的解集为不等式组的解集,即“同小取小”。如果方向都向右时取在右边的未知数的解集为不等式组的解集,即“同大取大”。如果两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。

若两个未知数的解集在数轴上没有公共部分时,那么不等式组的解集就是空集,不等式组无解。

数学不等式解题技巧?

(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变。

(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集。

列一元一次不等式(组)解决实际问题,掌握解不等式应用题的步骤:

(1)找出实际问题的不等关系,设定未知数,列出不等式(组);

(2)解不等式(组);

(3)从不等式组的解集中求出符合题意的答案。

、一元一次方程的解法及其解的三种情况:

(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1;

(2)最简一元一次方程ax=b的解有以下三种情况:

①当 a≠0时,方程有且仅有一个解;

②当 a=0,b≠0时,方程无解;

③当 a=0,b=0时,方程有无穷多个解.

不等式公式法解法?

1、如果x>y,那么yy;(对称性);

2、如果x>y,y>z;那么x>z;(传递性);

3、如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;

4、如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;

5、如果x>y,z<0,那么xz

6、如果x>y,m>n,那么x+m>y+n;

7、如果x>y>0,m>n>0,那么xm>yn;

8、如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂

不等式组的四种解法?

1、若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”。

2、若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”。

3、若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”。

4、若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”。

不等式的解题方法与技巧公式?

不等式的计算一般是,不等式的右边化为零,左边进行因式分解进行求解。如x的平方-x>2

化为x平方-x-2>0

( x+1)(x-2)>0

所以x<-1或x>2

基本不等式十大解题技巧?

不等式的解法:1、找出未知数的项、常数项,该化简的化简。2、未知数的项放不等号左边,常数项移到右边。3、不等号两边进行加减乘除运算。4、不等号两边同除未知数的系数,注意符号的改变。

1.符号:

不等式两边都乘以或除以一个负数,要改变不等号的方向。

2.确定解集:

比两个值都大,就比大的还大;

比两个值都小,就比小的还小;

比大的大,比小的小,无解;

比小的大,比大的小,有解在中间。

三个或三个以上不等式组成的不等式组,可以类推。

3.另外,也可以在数轴上确定解集:

把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。带=号的,数轴上的点是实心的,反之,就是空心的。

用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。

其中,两边的解析式的公共定义域称为不等式的定义域。

整式不等式两边都是整式(即未知数不在分母上)。

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0

同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。

①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;[1] (乘法原则)

⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑥如果x>y>0,m>n>0,那么xm>yn;

⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数);

或者说,不等式的基本性质的另一种表达方式有:

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

⑧倒数法则。

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。

另,不等式的特殊性质有以下三种:

①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

不等式怎么解初中?

初中不等式的解法步骤一般是去分母,去括号,移项,合并同类项,把未知数的系数化为一。再把系数化成1时,如果在不等式两边同时乘以或除以一个正数,不等号的方向不变;如果同时乘以或除以一个负数,不等号的方向改变。

版权声明

您可能感兴趣

返回顶部